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Equilibrium and Transport Properties of 
Mixed Electrolytes 1 

E. C. Zhong 2 and H. L. Friedman 2 

The mixing rules which govern the changes in thermodynamic properties when 
electrolytes are mixed are briefly reviewed. Similar rules have been reported on 
the basis of both experiments and model calculations to govern the change in 
electrical conductivity when electrolytes are mixed. New model calculations 
show that there also is a Cassel-Wood effect in the conductivity of mixtures of 
electrolytes of different charge types. 
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1. I N T R O D U C T I O N  

Mixed electrolyte solutions have presented many  problems concerning how 
best to represent the mixture properties and relate them to the consti tuent 
single electrolytes [1, 2].  In  any mixture there are pair interactions that  are 
not  present in the single electrolytes, so the mixtures constitute a source of 
information I-3-5] about  the new pairwise interactions. On  the other  hand, 
it transpires that  the specific interaction within sets of three or  more  ions 
contr ibute so little that  the properties of  many  mixtures of three or  more  
electrolytes over a wide range of composi t ions can be predicted quite well 
from the properties of  single electrolytes and binary mixtures thereof [5] .  

To focus on the interactions that  are "turned on" when the mixture is 
formed, we write, for a chosen measurable proper ty  P, its change on 
mixing at fixed temperature,  pressure, and ionic strength L 

Z l m P ( y  , I )  ~ P ( y ,  I )  - y P ( 1 ,  I )  - (1 - y)  P(0, I) (1) 
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where y is the fraction of the ionic strength due to one of the electrolytes 
and P is the amount of a chosen extensive variable per unit amount of 
solution. 

For example, P may be (RT) 1 times the excess free energy G cx per 
amount of solution containing 1 kg of solvent; then I is most naturally the 
motal ionic strength �89 where z S is the electrovalence and ms is the 
molality of species s (see Appendix A). Other thermodynamic mixing 
functions can be obtained by thermodynamic differentiation of 
AmGeX(y, I). Some aspects of this relatively well-known part of the study of 
electrolyte mixtures are discussed in Section 2. 

In the other cases reported here P is 1000 times the specific conduc- 
tivity [-1, 2] a of the electrolyte solution. The systematic investigation of 
mixing effects on transport properties has begun, whether experimentally 
or theoretically, only very recently [6, 7]. 

2. T H E R M O D Y N A M I C  P R O P E R T I E S  

The theoretical basis for the study of mixtures of electrolytes at 
equilibrium is the cluster expansion for the free energy of an ionic solution 
of arbitrary composition. Thus the excess Helmholtz free energy of a 
volume V of solution is given by 

- ~ A e x / v =  ~3/12~z + Xabp~pbBab(~ ) + S~bcpaPbpcBabo(~ ) + "" (2) 

where ~ = 1/k B T, p~ is the particle number density of species a (at a certain 
elevated pressure [3, 8, 9]; Appendix A), and B~b (~:) is a modified cluster 
integral on a set of ions of the indicated composition. The modification 
involves the Mayer [10] rearrangement (renormalization) in which chains 
of Coulomb 1/r interactions are summed to give e-~r/r. The theory of elec- 
trolyte mixtures folows from the fact that, when the mixing operator A m of 
Eq. (1) is aplied to Eq. (2), only the explicit concentration factors Pa, Pb,'", 
change, the cluster integrals being merely constant coefficients [-3]. If we 
write 

FmP(y, I) = I2y(1 - y)[po(I) + (1 - 2y)pl(I)  + (1 - 2y) 2 p2(I) + ---] (3) 

then the coefficients p,(I) (which are independent of y) are linear com- 
binations of the modified cluster integrals B,b...(~ ). The secular I depen- 
dence of p,,(I) is P ;  it would be the actual I dependence except for the long 
range of the Coulombic and hydrodynamic interactions. As a consequence 
of the Mayer rearrangement, the modified cluster integrals, which may be 
written as functionals of e - ~r, diverge mostly [, I 1 ] as ~c ~ 0. 

Each electrolyte mixing rule originally was formulated for some 
thermodynamic derivative of G *x, but we formulate them in terms of G ~x 
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itself, thus with P = GCX/RTW, where G ex is the extensive excess Gibbs free 
energy and W is the number of kilograms of solvent. 

The first is Harned's rule (also called Young's rule), according to 
which the Po term in Eq. (3) dominates the rest; the experimental data are 
adequately represented by Eq. (3) truncated after the Po term. 

The second is the cross-square rule ( x  [] rule; also called Young's 
cross-square rule). To define it we introduce the four electrolytes E13 , E23 , 
E~4 , and E24 that may be formed from cations of species 1 and 2 and 
anions of species 3 and 4. From these electrolytes one can form four com- 
mon-ion mixtures E13 q'-E13 , etc., and two cross mixtures, E 1 3 + E 2 4  and 
E23--}-Et4 , all with the same ionic strength I; then the sum of the four 
AMP(�89 I) for the common-ion mixtures is denoted _r[~, while the sum of 
the other two AMP(�89 I) is denoted Z 'x .  The simple x [] rule we use is 
Z'x =Z[2].  In Appendix B other cross-square rules [12, 13] are given. 
Often it is found that Harned's rule and the x [] rule are realistic in a wide 
concentration range from, say, 0.5 to 5 molal ionic strength. 

60 
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0 .3 .6 .9 

V7 
Fig. 1. Mixing coefficients PI(I) for a model for 
aqueous LiCI, MnC12 mixtures. A is the free 
energy function 4000g1(I), with gl(I) taken from 
Ref. 14. The scale factor is merely to facilitate 
visual comparison with a~. B is crl(I ) calculated 
for the same model. The calculation for C is the 
same as for B, except that the model Mn 2+, C1- 
Gurney parameter [14, 18] has been increased 
by 0.1k 8 T. D is an additive contribution to al(1) 
from S(y), as described in the text. 
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Now we turn to a third regularity which concerns the behavior of the 
pt(I) coefficient in very dilute mixtures of two electrolytes of different 
charge types, the Cassel-Wood effect [15]. When the ionic charges zl and 
z2 are not the same, then for a mixture E13+E23 the limiting law 
p~(I) --* CI 1/2 holds at sufficiently small/ ,  with a coefficient C that depends 
on the ions only through their charges [14-16"1. Cassel and Wood [15] 
measured enthalpies of mixing for two such unsymmetrical mixtures. With 
P = H/RTW, where H is the extensive enthalpy, they found that p~(I) is 
very small in the molar concentration range, but in the range from I = 1 to 
I =  0.01 the coefficient pl(I) increases strongly as I is lowered. Thus, in viw 
of the limiting law for p~, a peak in p~(I) at very low concentrations was 
predicted [16] and actually located (under the HNC approximation) for a 
modal for a mixture of LiC1 and McC12 [14]. The latter calculation locates 
the peak near I =  10 3 m (see Fig. 1), too dilute for the required thermo- 
dynamic properties to be measured by known methods. 

3. TRANSPORT IN MIXED ELECTROLYTES 

Historically the electrical conductivity of ionic solutions has been the 
most important property for investigating them, so it is interesting to ask 
what we may learn about electrolyte mixtures from conductivity data. In 
this endeavor we use a cluster expansion for the conductivity of electrolytes 
[17] together with an approximation method of the integral equation type 
[ 181 that can be applied to solution models to calculate the conductivity 
as well as the ionic self and distinct diffusion coefficients. The distinct 
diffusion coefficient Oadb is especially interesting because it vanishes in the 
absense of interactions between the a ion and the n ion, so it is a 
remarkably direct measure of the pair interaction [18]. However, here the 
only transport property we discuss is the specific conductivity o. We note 
that, in the physical chemistry of solutions of single electrolytes, ~ is 
usually addressed in the combination A = 100~/N, where A is the equivalent 
conductivity and N is the normality (equivalents per liter). Because of our 
fixation with mixing at a constant ionic strength (Section2), we would 
replace the equivalent conductivity by the ionic strength conductivity A '= 
lO00a/I Appendix A). 

Now we ask whether we expect to find that Harned's rule and the 
x [] rule are valid when P(y, I ) =  1000[a(y, 1)"1. An answer is found by 

beginning with a cluster expansion [17] that is analogous to Eq. (2). We 
recall that in the latter the term - ~3/12n derives from the sum over all ring 
graphs made by closing chains of Coulomb bonds [--flUCb(r) 
bond=- - f l eaes / s r l  on black Pio~ vertices. Of course in Eq. (2) the ~c 
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dependence of the cluster integrals derives from the sum of such Coulomb- 
bond, p-vertex chains. The cluster expansion of the conductivity is 

a = ~  ~ + ~ - - ~  + ~ + 'T ~ ' ) +  (4) 
/ 

where the first term on the right is the ideal conductivity. In these diagrams 
the secular I dependence is L n, where n is the number of horizontal lines, 
one for each ion in the cluster. The actual I dependence is weaker than the 
secular because the static chain sums [also involved in Eq. (2)] given 
divergent contributions to the integrals as K-~ 0. In addition, there are 
dynamical chain sums, as we shall see. They are not constant for variations 
in composition at fixed I. [While analyzing Eq. (4) to a degree that is suf- 
ficient to explain the role of the dynamical chain sums, we refer to an 
earlier report for many aspects that are omitted here (Ref. 17, Fig. 1).-1 In 
each diagram time increases from right to left. The curved lines represent 
equilibrium spatial correlations gab(r)--1 at t = 0 ,  which are adequately 
approximated here by --~UCb(r)e -~r. The Debye shielding factor e -~r 
xomes from the Mayer rearrangement that is used to generate the static 
chain sums in the modified cluster integrals in Eq. (2); the contribution of 
gab(r) is a static effect; it does not depend on the mobilities of the ions. 

The vertical straight lines represent forces between ions; the longest 
ranged are --VUCb(r) and hydrodynamic forces. These interactions all con- 
tribute to the asymptotic dependence of a on I as I-~ 0. More generally, 
however, the non-Coulombic part of the pair interactions must be 
included, as well as more tightly connected diagrams (i.e., with multiple 
vertical lines that collectively represent nonlinear interactions. 

The horizontal lines in Eq. (4) are ion propagators, self-van Hove 
functions in phase space. In certain limiting cases the propagator for an a 
ion reduces to 

exp{ - J r ( t ) -  r(O)]2/4D~~176 1/2 

which illustrates the role of the bare self-diffusion coefficient D~ ~ (1//~D s~ is 
the friction coefficient) of an ion of species a in the pure solvent. 

Even in the I ~ 0  asymptotic regime the series in Eq. (4) must be 
extended to include the diagrams which are related to those shown by 
replacing the propagator-force interaction by chains of propagator-foce 
interactions. 

L__ ~ _  + t  + t  +--- 
t__ t (5) 

t _  
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The reason for this renormalization (which gives the dynamic screening) is 
the usual one; taken one by one the individual terms give divergent 
integrals that contribute to a, while the divergences mutually cancel when 
these dynamic chain sums are formed. But we must remark on some 
unusual features of this renormalization. One is that the lowest-order terms 
are not divergent; each cluster diagram in Eq. (4) represents a finite con- 
tribution to a. But the higher terms, taken one by one, do given divergent 
integrals. Another is that renormalizing the diagrams in Eq. (4) has the 
efect on a that Onsager ascribed to including "the Brownian motion of the 
ions" in his correction [19] to the Debye-Hueckel conductivity theory 
[20]. Finally, a typical dynamical chain sum can be reduced to [17] 

2 sO sO SbXbD b/(O b + D ]  ~ - sate 2 (6) 

which ranges from �89 (all S~ ~ the same) to x 2 (one D~ ~ much larger than 
any of the others). 

The most important feature of the dynamical chain sums in the con- 
text of the mixing rules is that da will change with composition even at 
fixed ionic strength unless all of the bare self-diffusion coefficients are the 
same. To see the consequences, we rewrite Eq. (4) in terms of the secular 
concentration factors in analogy to Eq. (2) 

O" = S a Pa C a  -}- ~ 'ab Pa P b Cab -[- Sabc  Pa Pb Dc Cabc  "Y " '" (7) 

where (except for the ideal term Ca) the C coefficients will vary with com- 
position even at fixed I due to the dynamical chain sums. On this basis it 
would appear that the theoretical basis of the mixing rules does not extend 
to the case in which P is the conductivity. 

To see how the composition dependence of the dynamical shielding 
affects the validity of the x [] rule we first test this rule in the limiting law 
region where the exact conductivity theory is known and where short-range 
specific ion-ion interactions can be neglected. To make a connection with a 
widely used form [21] for the concentration dependence of conductance, 
we write (see Appendix A) 

A ' ( y , I ) = A ' o ( y ) - S ( y ) x / - i + E ( y ) I l n I + J ( y ) I +  . . .  (8) 

where A~ is the ideal term; it makes no contribution to S [] or S x.  The 
limiting law coefficient S for an ionic solution of general composition can 
be expressed in terms of algebraic combinations of the ionic strength frac- 
tions, charges, and bare self-diffusion coefficients [22]. Thus in the limiting 
law region, the regime in which the E, J, and higher terms in Eq. (8) are 
negligible compared to the S,~/-I term, we can calculate exactly the 
deviation from the • [] rule for A' or a. 



Properties of Mixed Electrolytes  683 

Some typical results are reported in Table I. As expected the relative 
deviation 

r• = (Xx -X[]) /XD (9) 

from the x [] rule is smallest for models in which the mobilities are all the 
same. What was not anticipated is that, even with bare self-diffusion coef- 
ficients spread over a wide range, Ir • []l is, at most, only about 1%. This is 
less than the experimental uncertainty in many cases, even in the molar 
concentration range. 

It is traditional to reduce electrolyte conductivity data to equivalent 
conductivities on equivalent concentration (normality) scales, so we have 
also tested the x [] rule for mixings at constant normality (Table I). The 
deviations again are small. 

On the basis of the results in Table I there is no apparent reason why 
the x [] rule for conductivity should not also be realistic at higher concen- 
trations. Indeed this is demonstrated by the experimental tests of this rule 
for the conductivity of I=lm mixtures of the ions K +, Mg 2+, CI-, and 
N O  3 and mixtures of K +, Li +, CI- ,  and SO42- [7]  and by model 
calculations [7]  leading to Table II. Aside from the good compliance with 
the • [] rule, these data show only that there is scope for improvement in 
the models, judging by comparison with experimental data [18]. In view of 
the observation [5] that ion pairing causes deviations from the x [] rule, 
we point out that the last set of data in Table II were calculated for models 
in which there is a strong tendency to form C1 , C1 associated pairs 
[18,25].  

Table  I. x [] Rule  for Conduc t iv i ty  in the L imi t ing  Law Regime for 

Mix tures  wi th  Var ious  Charge  Types  and  Ion  Mobi l i t i es  

z i ,  i ~ ~  a i = 1000r • D 

1 2 3 4 1 2 3 4 I b N C 

1 - 1  1 - 1  50 76 74 71 0.08 0.008 

1 - 1 1 - 2  37 76 76 40 - 1 2 .  - 1 . 5  
1 - 10 1 - 10 10 10 100 100 0.4 0.5 

1 - 1 3 - 2  350 76 20 40 - 2 1 .  8. 
1 - 3  2 4 100 33 - 50 25 2.4 15. 

1 - 3  2 - 4  50 50 50 50 - 0 . 0 0 2  7.9 

20 is the l imi t ing  equiva l len t  conduc t iv i ty  of 

b For  mix ing  at  a cons tan t  ionic  s trength.  
c Fo r  mix ing  at  a cons tan t  normal i ty .  

ion i in water  at  25~ 
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Table II. • []  Rule Model Calculations: Aqueous Electrolytes at 2 5 ~  a 

Z x  Z E ]  

N a C l  b - 4.86 N a B r  - 226 

- 1 3 4 . 9  - 1 3 1 . 8  

K C I  - 3.90 K B r  - 49.6 275.6 275.5 

KC1 b - 10.2 K N O  3 - 337 

- 680 - 593 

MgC12 - 13.8 M g ( N O 3 )  2 - 9 6 3  - 1300 - 1297 

LiC1 b - 4 7 . 3  L i 2 S O  4 - 3 0 . 6  

- 3 3 1  - 2 7 2  

K C I  24.3 K 2 S O  4 - 6 4 2  - 6 3 0  - 6 1 0  

LiC1 c - 360 Liz SO4 - 8970 

- 2590 - 6360 

K C I  1680 K 2 S O  4 630 - 8340 - 7630 

a 1000Ama(�89 I )  for indicated mixings. The numbers in between two electrolyte formulas per- 
tain to mixing that pair. The numbers to the right of the "square" each pertain to the nearest 
cross mixing. For example, the number next to Mg(NO3)2 is for the Mg(NO3)~KC1 mixing. 

b Calculated for charged soft-sphere models i7 ]  at I =  1M. 

c Calculated for models based on Pettitt Rossky solvent-averaged pair potentials at I = � 8 9  

1-25]. See footnote 25 in Ref. 7. 

It might seem appropriate next to develop models that fit the 
experimental x [] rule data. But first we need to know more about ion-ion 
pair potential models that are consistent with the results of ab initio 
calculations and with the experimental excess free energies for all of the 
relevant single and mixed electrolytes. 

Among the experimental data that would be very useful for this pur- 
pose is gl(I) [defined as the pl coefficient of Eq. (3) when P = GeX/RTW] 
for each of the unsymmetrical common-ion mixtures. Figure 1 shows gl(I) 
calculated [14] from a model for aqueous mixtures of LiCI and MnC12. It 
turns out that the peak in gl(I), itself a remarkable feature at such low 
concentrations (near 10 -3 M), is very sensitive to small changes in the 
model Mn2+-C1 pair potential. In Fig. 7 of Ref. 14 this sensitivity is 
illustrated by claculations of certain ion-ion pair correlation functions at 
compositions near I=0.005m; they change markedly when the model 
Mn 2+, C1- pair potential is made slightly less attractive by increasing the 
Gurney parameter AMn, Cl by 0.1kB T [14]. This slight change in the model 
lowers the peak in gl(I) from 0.014 (Fig. 1) to 0.012, so it is clear that 
experimental data for ga(I) would be useful for selecting or tuning the 
solution models of interest. Unfortunately such measurements, whether for 
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gl or any of its thermodynamic derivatives, seem to be beyond the present 
state of the art. However, if the corresponding elect exists in the conduc- 
tivity data it might well be accessible to experimental investigation. 

Therefore we have calculated the conductivity of the same LiC1, McC12 
model [-14, 16] to see whether the extension of the mixing rules from 
thermodynamics to conductivity, as has been indicated by Harned's rule 
and the x [] rule, also covers the Cassel-Wood effect. 

The remarkable result is shown in Fig. 1 for the conductivity function 
al(I) which appears in the notation of Eq. (3), specialized for the case in 
which P = 1009m 

lO00Ama=I2y(1-y)[ao(I)+(1-Zy)a~(I)+ . . .]  (10) 

If the Gurney parameter for the model Mn 2+, C1- interaction is increased 
by O.lkBT, the a~ curve shifts from B to C. Therefore it looks as though 
data for the al(I) would indeed be useful for testing and tuning model pair 
potential functions. 

A molecular picture has been proposed for the Cassel-Wood effect in 
thermodynamics [14]. It involves the pair correlation functions gij(r) for 
Li +, Mn 2+ pairs and Mn 2+, Mn 2+ pairs and how they are affected by the 
formation of a weak Mn 2+, C1 ion pair complex. The effect of these 
interactions evidently is to lower g~(I) relative to the limiting law line and 
we find here a qualitatively similar change for a~(I). In particular, the 
peaks in gl and a~ are both lowered when we make the Mn 2+, C1 
interaction slightly less attractive. 

Curve D in Fig. 1 represents a small but interesting complication. This 
has to do with the y dependence of S(y) [Eq. (8)]: It makes a contribution 
to al(I)  that diverges at I =  0, a feature that has no counterpart in g~(I); 
for thermodynamic properties the coefficient that corresponds to S has no 
y dependence. This in turn follows because the cluster integrals Ba...(tr ) 
have no y dependence. The y dependence of S(y) is an expression of the 
contribution of the dynamical chain sum in Eq. (6). As shown by the D 
curve in Fig. 1, it becomes important only at concentrations below which 
we have obtained accurate solutions of the integral equation theory of con- 
ductivity from which curves B and C have been calculated. Here we have 
another example, but entirely different from the x [] rule data, of the fact 
that the degree to which the dynamical chain sums differ from the 
equilibrium chain sums is of little importance for electrolyte mixtures. 

4. CONCLUSIONS 

To the degree that the AZF conductivity theory [18] is adequate for 
the applications developed here, we have established that the x [] rule and 
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the Cassel Wood effect, both known from studies of the thermodynamics 
of mixed electrolytes, extend to the electrical conductivity. These results 
indicate that the excess conductivity is due mainly to the specific interac- 
tions of pairs of ions and ion triples, with negligible contributions from the 
specific interactions of larger clusters of ions. On this basis it is expected 
that Pitzer's equations for the thermodynamic properties of electrolyte 
solutions [-12, 13] could be extended to the conductivity. Also, because of 
the great accuracy with which electrical conductivity can be measured, it 
may be feasible to tst for the predicted peak in al(I) in real solutions in a 
way that does not seem possible for g~(I) or its thermodynamic derivatives. 

APPENDIX A. CONCENTRATION SCALES 

In this report a number of technical details have been suppressed in 
order to avoid obscuring the main points. A typical aspect of this kind is 
the distinction between McMillan-Mayer states (MM states; where the 
independent variables are the chemical potential of the solvent, the tem- 
perature, and the number densities of the ions, and the convenient ther- 
modynamic potential is the Helmholtz free energy) and Lewis-Randall 
states (LR states; where the independent variables are the pressure, the 
temperature, and the molal concentrations of the ions and the convenient 
thermodynamic potential is the Gibbs free energy). For thermodynamics 
the theory often is developed most easily for MM states, while the 
experimental aspects are more conveniently reported for LR states. The 
way to calculate one from the other, given sufficient thermodynamic data 
for the solutions, is well known [-3, 8, 9, 23, 24]. A simple example is 

1=1 2 2 (11) ~ V ' a m a Z  a = 0~K = o~4rc(e2fl/8) ~aPa z2 

where the conversion factor a derives from the difference between the LR 
molalities on the left and the MM particle number densities on the right. 
The neglect of the concentration dependence of ~ in this report is typical of 
the technical details that are suppressed. Such approximations do not cause 
significant errors here. More detail would be needed for applications to 
systems in which the partial molar volumes of the ions are relatively large, 
say, for tetrabutyl ammonium ions. 

A P P E N D I X  B. VARIANTS OF THE • [] RULE 

We introduce the notation D(ca, CA) = AMP(�89 I) for mixing Eoa with 
EcA, and we write a generalized x [] rule 

Xx w(ca, CA) D(ca, CA)=Z'[E w(ca, CA)D(ca, CA) (12) 
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or, in more detailed form, 

w(ca, CA) D(ca, CA) + w(cA, Ca) D(cA, Ca) 

-- w(ca, cA) D(ca, cA) + w(cA, CA) D(cA, CA) (13) 

+ w(eA, Ca) D(CA, Ca) + w(Ca, ca) D(Ca, ca) 

which reduces to the simple x [] rule defined in Section 2 when all of the 
weight functions w(ca, CA) are the same. In another case, with 

w(ca, CA) = (Zc - Za)(Zc -- ZA) (14) 

Eq. (13) becomes the canonical x [] rule. In the spcial case zc=zc  and 
z, = ZA, we again recoer the simple x [] rule. 

The canonical x [] rule for thermodynamic properties follows exactly 
from Eq. (2) if the series is truncated after the third virial coefficient terms 
[26]. So it is also consistent with Pitzer's equations, which derive from a 
certain modified form of the cluster expansion in Eq. (2) [12, 13]. Reilly 
and Wood have introduced another x [] rule with w(ca, CA) coefficients 
different from unity, but it is not the same as the canonical x [] rule. It is 
found, for both thermodynamics and conductivity and for both model 
calculations and experiments, that the simple x [] rule exhibits nearly the 
same accuracy as the canonical x [] rule, with sometimes one and 
sometimes the other being more accurate. Since neither can be exact for 
real systems, in view of the neglect of higher terms in the cluster expansion 
and, in the case of conductivity, in view of the y dependence of the cluster 
integrals, and since they are about equally accurate, we give results only for 
the simple x [] rule in this report. 
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